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Recent years have witnessed the surge of biometric-based user authentication for mobile devices due to its promising security
and convenience. As a natural and widely-existed behavior, human speaking has been exploited for user authentication.
Existing voice-based user authentication explores the unique characteristics from either the voiceprint or mouth movements,
which is vulnerable to replay attacks and mimic attacks. During speaking, the vocal tract, including the static shape and
dynamic movements, also exhibits the individual uniqueness, and they are hardly eavesdropped and imitated by adversaries.
Hence, our work aims to employ the individual uniqueness of vocal tract to realize user authentication on mobile devices.
Moreover, most voice-based user authentications are passphrase-dependent, which significantly degrade the user experience.
Thus, such user authentications are pressed to be implemented in a passphrase-independent manner while being able to
resist various attacks. In this paper, we propose a user authentication system, VocalLock, which senses the whole vocal tract
during speaking to identify different individuals in a passphrase-independent manner on smartphones leveraging acoustic
signals. VocalLock first utilizes FMCW on acoustic signals to characterize both the static shape and dynamic movements
of the vocal tract during speaking, and then constructs a passphrase-independent user authentication model based on the
unique characteristics of vocal tract through GMM-UBM. The proposed VocalLock can resist various spoofing attacks, while
achieving a satisfactory user experience. Extensive experiments in real environments demonstrate VocalLock can accurately
authenticate user identity in a passphrase-independent manner and successfully resist various attacks.
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1 INTRODUCTION

Recent years have witnessed the surge of biometric-based user authentication for mobile devices as it is a
promising alternative to classic passwords for user authentication. Among various biometric modalities (e.g.,
fingerprint [18] and facial [41]), voice has wide applicability due to that the speaking is one of the primary
behaviors widely existed in daily work and life. Different from other biometrics, voice-based user authentication
can be implemented in a convenient and low-cost manner on mobile devices. Such user authentications are thus
commercially available in industrial products like Google Trusted Voice [17], and WeChat Voiceprint Lock [50].
Most voice-based authentications rely on physiological voiceprint to identify different individuals. However, such
approaches have been demonstrated to be vulnerable to replay attacks [21, 58, 59], due to the lack of liveness
verification.

Taking a close look, when an individual speaks, the audible voice with specific frequencies is modulated
and filtered by the movements of multiple components in the vocal tract. Similar to the distinct voiceprint for
different individuals, the vocal tract, including the static shape and dynamic movements, also embeds the unique
characteristics during speaking [6]. Along this direction, new researches turn to explore the physiological and
behavioral characteristics of speaking for realizing secure voice-based user authentication. The whole vocal
tract involves the static shape of vocal tract and the highly-coordinated dynamic movements of all the organs in
the vocal tract. Existing solutions [27, 46, 58] can only capture the dynamic movements of partial vocal tract
(i.e., the lip), due to the limited capability of Doppler-based approaches. Hence, the recordable movements of
vocal tract are probable to be imitated by adversaries, thus leading to the vulnerability of [27, 46, 58] to mimic
attacks. Another work [59] localizes the phoneme sound inside the vocal tract during speaking to realize the user
authentication. Although this work is immune to mimic attacks, the localization approach limits users to fix the
smartphone in the same position every time, which is almost impossible for mobile users to follow in practice.
Thus, this work is motivated to explore the possibility to utilize both the static shape and dynamic movements of
the vocal tract to characterize the individual uniqueness for user authentication.

Additionally, most current voice-based user authentications are passphrase-dependent, i.e., users are required
to speak the same passphrase in the register and login, which leads to poor user experience [12]. Although some
voiceprint-based solutions [14, 38] explore the in-depth individual uniqueness without specific passphrase contents
to realize the passphrase-independent voice-based user authentication, the vulnerability of voiceprint-based
approaches to replay attacks still remain unsolved. Despite voiceprint-based solutions, speaking behavior-based
approaches (e.g., mouth movements and phoneme localization) can only identify individuals in a passphrase-
dependent manner. Therefore, in this work, we not only capture the individual uniqueness of the whole vocal
tract for user authentication, but also aim to authenticate user identity in a passphrase-independent manner.

To achieve the passphrase-independent user authentication system leveraging the vocal tract, we consider
utilizing acoustic signals to characterize the unique speaking behavior of the whole vocal tract, because the
acoustic signals are robust to various environments without the requirement of additional infrastructures. To
realize such user authentication, we face a number of challenges in practice. First, since the speaking behavior
involves both the static shape and dynamic movements of the vocal tract, we need to accurately characterize
the whole vocal tract during speaking with the acoustic signals. Second, since the acoustic signals generated by
mobile devices are easily eavesdropped in some physically-insecure spaces, we should well-design the signals
from the mobile devices to resist the replay attacks. Finally, since extracted unique features from the vocal tract
involve passphrase contents, we need to eliminate such contents to realize the passphrase-independent user
authentication model for user-friendly experience.

In this paper, we first characterize the whole vocal tract during speaking leveraging FMCW (Frequency
Modulated Continuous Wave) technique on acoustic signals. Since FMCW modulates the signals to capture
features of the vocal tract, the features from demodulated signals are difficult to be eavesdropped. Through
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analyzing the features of vocal tract from demodulated acoustic signals, we find there are unique patterns of
the vocal tract and such patterns could be exhibited in a passphrase-independent manner through statistical
methods. Inspired by the observations, we propose a user authentication system, VocalLock, which identifies
different individuals in a passphrase-independent manner through sensing the whole vocal tract during speaking
leveraging acoustic signals on smartphones. In VocalLock, a smartphone’s speaker continuously transmits acoustic
signals modulated by FMCW, and the microphone receives the acoustic signals. Then, VocalLock extracts the
unique features of the vocal tract from the demodulated signals by FMCW to construct a user authentication
model. To improve the user experience, we propose an EDNN (Encoder-Decoder Neural Network) to transfer the
features of the vocal tract to that of speech voices, and then employ the speech voice-based GMM-UBM (Gaussian
Mixture Model-Uniform Background Model) [38] to construct a passphrase-independent user authentication
model. Such an authentication model can not only resist the replay attack and mimic attack, but also authenticate
individuals in a passphrase-independent manner.
We highlight our contributions as follows.

e We characterize the whole vocal tract during speaking by FMCW on acoustic signals for user authentication
that are resilient to both mimic and replay attacks.

e We extract the unique features from the characterized vocal tract in the modulated acoustic signals, and further
propose a user authentication approach by sensing unique characteristics of vocal tract during the speaking.

e We construct a passphrase-independent authentication model based on GMM-UBM to achieve security and
maintain the user-friendly experience simultaneously.

e We conduct experiments in different real environments. The results show that VocalLock can achieve 91.1%
accuracy on average in user authentication and 5.1% false accept rate in attack resistance.

The rest of this paper is organized as follows. We first review related works in Section 2. Then, we present the
attack scenario and investigate the feasibility of sensing vocal tract characteristics for passphrase-independent
user authentication leveraging acoustic signals in Section 3. Next, Section 4 presents the system overview of
VocalLock. We further illustrate design details of VocalLock in Section 5 and 6. The evaluation results of VocalLock
are shown in Section 7. We further discuss several limitations in Section 8. Finally, we make a conclusion in
Section 9.

2 RELATED WORKS

In this section, we review existing researches related to this work.

Acoustic Sensing Background. Previous studies explored acoustic signals for activity recognition [52],
gesture recognition [8], tracking [56], indoor localization [35], and even lip reading-based speaking recovery [45],
etc., which supports various practical applications. Recent researches also utilized acoustic signals to replace
specific sensors, such as replacing specialized sensors to monitor heart beats [37], breath rates [53], and even
replacing cameras for imaging [31].

Classic Approaches. The most prevalent and widely-deployed user authentication is the password [55],
which derives PIN and pattern lock [47]. However, such user authentication is knowledge-based and suffers
from inconspicuous stealing attacks [25, 29, 60]. To overcome the vulnerability, many biometric-based user
authentications are developed for mobile devices, such as fingerprint [18], face recognition [41], iris recogni-
tion [40], etc. However, these approaches either require specialized expensive equipments (e.g., infrared camera
for Apple FacelD [3]), or are vulnerable to replay attacks due to lack of liveness verification [59] and sensitivity
to environments [27].

Voiceprint-based User Authentication. Among various voice-based user authentications, voiceprint-based
approach is the most prevalent one [10, 24, 32]. However, voiceprint only measures the physiological characteristics
underlying the speech voices during speaking without achieving the liveness verification. This indicates such
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approaches are vulnerable to replay attacks, in which an adversary attempts to attack the authentication by using
a pre-recorded voice sample collected from a legitimate user. Existing studies [42, 49, 51] validated that replay
attacks to the voiceprint-based user authentication can achieve over 50% successful attack rate, which reveals the
severe vulnerability of voiceprint-based user authentication. Although recent work [36] designed an end-to-end
attack detection system to protect voiceprint-based user authentication, the involvement of WiFi infrastructures
may hinder its employment in ubiquitous mobile scenarios.

Mouth Movement-based User Authentication. To defend voice-based user authentication against attacks,
recent researches [26, 27, 46, 58, 59] explored the behavioral characteristics of speaking to achieve the liveness
verification for user authentication. VoiceLive [59] utilized Time-Difference-of-Arrival (TDoA) of pervasive
acoustic signals transmitted from smartphones to localize the phoneme sound for user authentication. Due to
the absolute distance measurement through TDoA, users are required to place the smartphone in the same
relative position every time, which is almost impossible for mobile device users to follow such strict constraints
in practice. Other studies [26, 27, 46, 58] adopted Doppler effect to sense the relative position-independent
behavioral characteristics of mouth movements during speaking for user authentication. However, these Doppler-
based solutions can only sense the dynamic movements of the vocal tract. This is because the Doppler-based
approach measures the moving velocity of a targeted object theoretically, indicating that such solutions could
not sense the static characteristics intrinsically. Such dynamic movements of the vocal tract are easily imitated
by adversary, which leads to probable mimic attacks. Also, these mouth movement-based solutions are exposed
to probable replay attacks, due to the un-modulated signals used for capturing mouth movements. However, all
the aforementioned studies only provide passphrase-dependent solutions, which requires users to remember
the passphrase in the register for subsequent logins. This strong restriction induces a similar user experience
with typical password-based authentication [12]. Hence, it significantly degrades the experience when using
such user authentications. A recent work [54] proposed to extract fieldprint from the physical field of acoustic
energy as the propagation of the signals, and explored the underlying uniqueness of different individuals for the
passphrase-independent user authentication. But this work could not realize the liveness verification of speech,
leading to probable failure in resisting well-designed replay attacks.

Table 1. Comparison of voiceprint-based and mouth movement-based user authentication studies.

Work Biometric Targeted Task Performance Dataset

Dehak et al.[10] ~ Voiceprint = Passphrase-dependent  1.12% EER NIST SRE’06 & 08

Matejka et al.[32] Voiceprint  Passphrase-dependent  2.94% EER NIST SRE’10

Lei et al.[24] Voiceprint ~ Passphrase-independent 1.66% EER NIST SRE’12

LipPass[26, 27] Mouth Passphrase-dependent ~ 90.2% Accuracy ?ollectefi under 12 participants
Movements in 4 environments

Mouth Collected under 50 participants

SilentKey[46] Movements Passphrase-dependent 76.7% TPR in 2 environments
Mouth 11 21 ici

VoiceGesture[58] out Passphrase-dependent 99% Accuracy CO ecteFl under 21 participants
Movements in 3 environments

N Mouth Collected under 12 participant

VoiceLive[59] ol Passphrase-dependent ~ 99% Accuracy . o ecier et .2 participants
Movements in 2 environments

. . . Collected under 20 participant

CaField[54] Fieldprint =~ Passphrase-independent 98.4% Accuracy . oectec under 20 participants
in 1 environment

. Collected under 25 participant

Our work Vocal Tract Passphrase-independent 91.1% Accuracy OUieCted UTCCL 25 participants

in 3 environments
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Table 1 summarizes existing studies of voiceprint-based and mouth movement-based user authentications.
Compared with voiceprint-based user authentications, our work employs both the physiological and behavioral
characteristics instead of the voiceprint of speaking, which enables the user authentication to resist replay
attacks. On the other hand, existing mouth movement-based solutions, including TDoA-based, Doppler-based,
and fieldprint-based user authentications, contributed to enhancing voice-based user authentication with the
capability of attack resistance. However, TDoA-based solution restricts users to hold the smartphone in the same
place during every use, and Doppler-based approaches could not characterize the whole vocal tract for user
authentication. Even worse, most existing mouth movement-based solutions except CaField [54] can only realize
passphrase-dependent user authentication, which degrades user experiences [12].

Different from the aforementioned researches, our work turns to explore the individual uniqueness embedded
underlying both the static shape and dynamic movements of vocal tract for authentication. We creatively employ
FMCW (Frequency Modulated Continuous Wave) techniques to sense the individual uniqueness of vocal tract in
an attack-resilient manner, and propose a transfer learning-based approach to realize the passphrase-independent
user authentication for user-friendly experience. The proposed authentication system outperforms existing
approaches on achieving both the security and user friendliness simultaneously.

3  MOTIVATION AND FEASIBILITY STUDIES

In this section, we first describe the attack scenarios of voice-based user authentication. Then, we further
characterize the whole vocal tract during speaking for user authentication leveraging acoustic signals, and
analyze the security of the vocal tract-based user authentication.

3.1 Attack Scenarios

Speaking is one of the most natural and common activities in human daily life and work, which embeds the
unique characteristics of different individuals. Hence, it is feasible to utilize the speaking for user authentication.
Voice-based user authentication approaches either employ the voiceprint underlying the speech voices or sense
the behavior of mouth movements. All of them suffer from the replay attack and mimic attack.

1) Eavesdropping and Replay Attack. An adversary deliberately eavesdrops a legitimate user’s speaking including
the speech voices and mouth movements in an inconspicuous distance. Then, the adversary attacks the user
authentication system through replaying the eavesdropped speaking.

2) Recording and Mimic Attack. Before attacking the user authentication, an adversary records a video of a
legitimate user’s speaking including both mouth movements and speech voices without arousing the user’s
awareness. Based on the recorded video, the adversary imitates the user’s mouth movement or speech voice
during speaking to attack the user authentication.

Under these two kinds of attacks, we assume the adversary could only obtain these knowledge (e.g., the
eavesdropped speaking or recorded video) in an indirect manner, i.e., without compromising the legitimate users’
devices to provide the knowledge for attacks. And we assume the legitimate users are hardly aware of such an
indirect eavesdropping and recording, but are conspicuous of the direct eavesdropping and recording, such as a
pre-implanted malicious APP in the users’ devices.

3.2 Attack-Resisted User Authentication Through Sensing Vocal Tract
To resist various attacks, we explore the individual uniqueness from vocal tract during speaking for the user

authentication.

3.2.1  Behavior of Vocal Tract during Speaking. When human speaks, the speech voice is generated by an airflow
passing through the whole vocal tract, as shown in Fig. 1. The airflow is first generated from the human lung.
Then, the pressure of airflow induces the vibration of vocal cords (including pharynx and larynx) to generate
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Fig. 1. lllustration of vocal-tract behavior during speaking. Fig. 2. lllustration of FMCW technique.

an audible voice with specific frequencies. Finally, the airflow carries the voice to pass through the vocal tract
(including oral cavity, lip, etc.), in which the voice is further modulated and filtered for calibration.

Usually, the generated speech voice during speaking embeds the uniqueness for different individuals. This is
because each individual is endowed with the unique static shape of vocal tract [4]. When an individual speaks, the
audible voice with specific frequencies is modulated and filtered by highly-coordinated dynamic movements of
all components in the vocal tract, which is different from other individuals [6]. Hence, except for the speech voice
is distinct, both the static shape and dynamic movements of vocal tract during speaking embed the individual
uniqueness, which exhibits the possibility of employing them in user authentication.

3.2.2 Characterizing Vocal Tract for User Authentication Leveraging FMCW. Since FMCW modulates the signals
for the sensing, the demodulated signals are difficult to be eavesdropped. Hence, we consider to characterize a
user’s vocal tract during speaking leveraging FMCW on acoustic signals.

FMCW is a widely-used distance measurement technique for radar. The technique first modulates the signals
for transmission, and then demodulates the signals for measuring the distance between the signal source and a
target object. Fig. 2 illustrates the basic principle of FMCW. For acoustic signals, the speaker of a smartphone
continuously transmits a modulated chirp signal, which sweeps across a bandwidth B (B = 20kHz—17kHz = 3kHz
in the figure) with a duration 7 (r = 0.02s in the figure). After reflected from the object, the chirp signal is received
by the microphone of smartphone. Then, FMCW demodulates the acoustic signal, i.e., performs the dechirp
operation [44] on both the transmitted and received signals to measure the frequency difference Af between
transmitted and received signals for Time-Of-Flight (TOF) estimation. Based on the geometry similarity principle
of a triangle, the TOF T is derived as

Af Xt
T=—. 1
K )
Based on Eq. (1), the distance d between the smartphone and an object is derived as
cxT
d= , 2
. @

where c is the speed of acoustic signals. Through FMCW, we can obtain the distance between an arbitrary point of
the vocal tract and the smartphone. We further utilize the FMCW on acoustic signals to characterize a user’s vocal
tract during speaking. Specifically, a smartphone continuously transmits a modulated chirp signal (which sweeps
a specific frequency band) by the speaker during the speaking of a user, and receives the acoustic signal by the
microphone. To demodulate the received signal, the system performs the dechirp operation on both transmitted
and received signal to derive the frequency difference Af. From the frequency differences, we can derive the
absolute distance between a point in the vocal tract and smartphone based on Eq. (1) and (2). Combining all the
absolute distances, we can characterize the vocal tract during speaking. Although there exist some studies [30, 48]
employing FMCW on acoustic signals to monitor breathing and realize in-air hand tracking, little work adopts
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Fig. 3. Examples of the frequency difference induced by speaking ‘Hello’ under two different users.

FMCW on acoustic signals to sense mouth movements and further realize the user authentication. To the best
of our knowledge, this work is the first research employing FMCW techniques on acoustic signals for user
authentication.

To investigate the feasibility of utilizing FMCW to characterize the vocal tract for user authentication, we
further conduct an experiment, in which two different users are asked to speak ‘Hello’ for two times respectively.
In each experiment, we fix the distance between smartphone and vocal tract as 5cm and place the smartphone
directly towards the vocal tract, so as to limit the impact of relative position on FMCW measurements. Fig. 3
shows the examples of frequency difference induced by speaking ‘Hello’ under two different users respectively.
We can observe that the two different speakings of the same user exhibit a similar frequency difference, as
shown in Fig. 3(a) and 3(b), as well as Fig. 3(c) and 3(d). On the other hand, the frequency difference of speaking
the word ‘Hello’ presents different variation trends between the two different users. These encouraging results
demonstrate that there are unique patterns of the vocal tract during speaking, which can be used to identify
different individuals.

3.2.3  Security Analysis. Through characterizing the whole vocal tract with FMCW technique, such user authen-
tication could be immune to various attacks, such as the replay attack and mimic attack.

As aforementioned, we utilize FMCW technique to characterize the whole vocal tract. To extract the features,
FMCW requires that the transmitter and receiver are synchronized, i.e., the transmitted and received signals
should be obtained under the same clock for feature extraction [30]. For a legitimate user, the transmitter and
receiver are both integrated into a smartphone, thus achieving the requirement. However, for an adversary, the
transmitter is located in the user’s smartphone while the receiver is integrated into the adversary’s smartphone.
Hence, these two separated devices hardly synchronize, which leads to the adversary not able to decode the
correct information from modulated signals. Based on this, user authentications employing FMCW technique
can resist replay attacks.

Moreover, during a speaking, both the static shape and dynamic movements of the whole vocal tract exhibit
the uniqueness of different individuals. Different from the recordable dynamic movements (such as mouth
movements), the static shape of the vocal tract always remains distinct for different individuals and thus is hardly
imitated, which helps to resist the mimic attacks for user authentication.
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Fig. 4. Distribution of principle components from acoustic patterns induced by two different volunteers speaking three
passphrases.

According to the analysis above, we characterize the individual uniqueness of vocal tract leveraging FMCW
technique on acoustic signals, which contributes to realizing the attack-resilient user authentication.

3.3 Passphrase-Independent Vocal Tract-based User Authentication

Although both static shape and dynamic movements of the vocal tract could be utilized for user authentication,
such an authentication remains passphrase-dependent, i.e., it requires users to remember the passphrase during
the register for subsequent logins. Such an authentication manner significantly degrades the user experience [12].
To improve the user experience, we are motivated to construct a passphrase-independent user authentication
system. In this section, we investigate the feasibility of distinguishing different individuals through sensing vocal
tract in the passphrase-independent manner.

3.3.1 Individual Uniqueness Underlying Sensed Vocal Tract. As mentioned in Section 3.2.1, each individual’s vocal
tract is endowed with the inborn uniqueness, which could be utilized to distinguish different individuals. During
speaking, such differences of the physiological shape of vocal tract further induce the distinct uniqueness of
vocal-tract behaviors. Through FMCW technique, both the static shape and dynamic movements of vocal tract
could be captured. However, different from the static shape of vocal tract, the vocal-tract behaviors embed not
only the inborn uniqueness, but also the passphrase contents. Hence, the mixture of both physiological and
behavioral characteristics of vocal tract results in the passphrase-dependence, i.e., such features change following
different passphrase contents, instead of remaining fixed for a specific individual.

Different from the individual uniqueness under a specific passphrase, the passphrase-independent uniqueness is
hardly observed from the signal patterns directly. Taking a close look at another domain, i.e., the text-independent
speaker identification [14], we are inspired to explore the statistical features underlying reflected acoustic
signals instead of temporal signal patterns. Existing studies of text-independent speaker identification reveal that
individual uniquenesses could be separated from speech contents through extracting the statistics from speech
voice sequences. Along this direction, we investigate the feasibility of exhibiting the passphrase-independent
uniqueness from signal patterns induced by the whole vocal tract leveraging statistical methods.

3.3.2  Feasibility Study of Passphrase-Independent User Authentication. We conduct a feasibility study to validate
whether the passphrase-independent uniqueness could be exhibited through statistical methods. In the experiment,
we recruit two volunteers to speak three different passphrases, i.e., ‘Hello’, ‘Open’, ‘Unlock’. Usually, users tend
to select simple passphrases during user authentication for a stronger usability [22], which supports such a
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passphrase selection in the feasibility study. To capture the whole vocal tract through acoustic sensing, we
implement the FMCW on acoustic signals as illustrated in Section 3.2.2 and deploy it on a Galaxy S6. Each
volunteer is required to speak each passphrase three times.

To extract statistics underlying the frequency differences, we employ Principle Component Analysis (PCA)
method, which derives correlations between different frequency differences to extract statistical features. Fig.
4 shows the distribution of principal components from acoustic patterns induced by two different volunteers
speaking three passphrases. In this figure, the x-axis is the first dominant component of PCA results, while the
y-axis means a specially-screened component of PCA results. We can see from Fig. 4(a) that the three different
passphrases are distinctly separated. Furthermore, from the other perspective shown in Fig. 4(b), it can be
observed that although speaking different passphrases, the two volunteers could still be roughly distinguished.
This result supports the feasibility of utilizing statistical features to uncover the passphrase-independent individual
uniqueness underlying the vocal tract.

According to the study above, we validate the feasibility of using statistical methods to extract the passphrase-
independent uniqueness, which contributes to realizing the user-friendly user authentication.

4 SYSTEM OVERVIEW

To provide both secure and user-friendly mobile authentication experiences, we propose a passphrase-independent
user authentication, VocalLock, which identifies different individuals through sensing the whole vocal tract during
speaking leveraging FMCW on acoustic signals. Fig. 5 shows the architecture of VocalLock, which includes two
stages, i.e., the register and login stages.

In the register stage, a user speaks a passphrase several times. Meanwhile, a smartphone’s speaker continuously
transmits the designed acoustic signals that are modulated by FMCW with satisfactory resolution, and then the
microphone receives the acoustic signals. VocalLock segments the received signals into several episodes in signal
preprocessing, each of which represents the behavior of speaking a word. Next, VocalLock extracts unique features
through FMCW technique, which characterize the user’s unique vocal tract during speaking. Given the extracted
features, VocalLock is able to construct a user authentication model to identify different individuals. In particular,
an Encoder-Decoder Neural Network (EDNN) model is first constructed to transfer the feature representation from
the vocal tract to speech voice. Based on transferred features, VocalLock further constructs a user authentication
model through the speech voice-based speaker recognition algorithm, i.e., Gaussian Mixture Model-Uniform
Background Model (GMM-UBM), which is able to authenticate individuals in a passphrase-independent manner.

In the login stage, a login user speaks an arbitrary passphrase, which can be either the same or different with
that in the register stage, to request the access to the system. During the speaking, VocalLock first transmits the
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modulated signals and then captures the reflected signals by vocal tract when a user speaks the passphrase, and
then preprocesses the signal for signal segmentation. Further, VocalLock extracts unique features to characterize
the vocal tract through FMCW technique, and transfers the feature of vocal tract to that of speech voice leveraging
the constructed EDNN model. Finally, to authenticate the user’s identity, VocalLock further feeds the transferred
feature to the trained GMM-UBM model for verifying the user whether a legitimate user or a spoofer.

5 VOCAL TRACT FEATURE EXTRACTION

Before constructing the user authentication model, VocalLock first extracts the unique features of vocal tract
through FMCW on acoustic signals.

5.1 Designing Chirp Acoustic Signal for FMCW

VocalLock utilizes FMCW on acoustic signals to sense the vocal tract for user authentication on smartphones.
The smartphone continuously transmits a chirp signal by the speaker and receives the acoustic signals by
the microphone. To ensure the features of vocal tract can be extracted from the demodulated signals (i.e., the
dechirp result of transmitted and received signals), we first need to design the transmitted signals for FMCW and
preprocess of received signals.

Designing Transmitted Signals for FMCW. During speaking, the vocal tract involves relatively rapid and
minute movements. Hence, to capture such movements, it is necessary to take both the prompt response and
sensing resolution into consideration. Thus, we first design the transmitted chirp signal in FMCW to achieve a
satisfactory response and resolution for sensing.

In FMCW, chirp signal includes the duration and bandwidth, which has a certain impact on the response and
resolution of the acoustic-based sensing. The design of chirp duration is related to the speaking time. Usually,
a user’s speaking is considered as stationary on short time scales of around 20ms [43]. To capture unique
characteristics of vocal tract under the short time scale of a stationary speaking, the duration of a chirp signal is
set as 20ms in our system.

Moreover, for the bandwidth design of chirp signal, it is essential to ensure that the transmitted signal provides
enough resolution for sensing the vocal tract while keeping inconspicuous to users for user-friendly experience.
According to Fourier Transformation theory [20], two chirp signals reflected by the vocal tract can be resolved
in frequency when the frequency difference satisfies Af > 1/7, where Af is the frequency difference between
the two chirp signals and 7 is the duration of the chirp signal. Based on Eq. (1) and (2), we can derive Af = ZEI—TB,
where d is the distance between the smartphone and vocal tract, B is the bandwidth of chirp signal and c is the
speed of acoustic signals. With the inequation and equation above, we can obtain

c

d> . (3)
This indicates that the resolution of FMCW increases as the bandwidth increases. Hence, the bandwidth should
be selected as large as possible. Combining the inconspicuous human auditory range (i.e., > 16kHz) with limited
recoding capability of smartphones (i.e., < 24kHz) [23], we select the bandwidth of [16, 24] kHz for the transmitted
chirp signal.

With the designed chirp signal, VocalLock can sense the vocal tract during speaking with satisfactory response
and resolution.

Preprocessing Received Acoustic Signals. The smartphone’s speaker continuously transmits the acoustic
signals modulated by FMCW, and the microphone receives the acoustic signals. The received acoustic signals need
to be first segmented into signal episodes of speaking a word. The speaking is usually not a consistent process,
in which there exists an inactive period (i.e., non-speaking state) between two active periods (i.e., speaking a

word). Usually, the short interval of an inactive period is around 300ms [27]. As shown in the top part of Fig.
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Fig. 6. lllustration of signal segmentation.

6, the speech voices lying in [0.3, 5]kHz exhibit significant differences between speaking and non-speaking on
the frequency response, which can be used to separate an active period from inactive periods. We utilize the
moving variance on received signals to extract the difference between active and inactive periods for signal
segmentation. Fig. 6 illustrates the signal segmentation through applying moving variance on received signals. It
can be observed that the moving variance of received signals in an arbitrary inactive period is zero, while that
in active periods is non-zero. Thus, we can use a sliding window to segment the received signals into signal
episodes of active periods.

5.2 Extracting Features of Vocal Tract

After the signal is preprocessed, VocalLock further extracts features of vocal tract from the acoustic signals. A
speaking process usually involves the vocal tract (including the static shape and dynamic movements) and speech
voice. Since the received signals include both chirp signals and voice signals that characterize the vocal tract and
speech voice respectively, we first separate these two kinds of signals in the received signals. Usually, the voice
signal lies in the frequency range of [0.3,5]kHz, which is different from the chirp signal of [16, 24]kHz. Hence,
we use a highpass filter with cut-off frequency 16kHz and Equiripple window to extract the chirp signals for
further extracting features of vocal tract. After the chirp signals are separated, VocalLock can extract the features
from the signals.

Mitigating Multipath Effect. Due to the short distance between microphone and speaker, LOS signal is far
more significant than reflected signals. Since LOS signal always exhibits stable frequency response in received
signals, it is possible to separate LOS signal with reflected signals through comparing the frequency response.
Hence, we propose a heuristic method based on Short Time Fourier Transformation (STFT) [1], which divides a
long-time signal into short sliding windows and derives frequency responses through Fourier transform separately
on each sliding window. Specifically, we perform STFT operation on the demodulated signal (i.e., sy = s X 5,
where s; and s, are the transmitted and received signals respectively) and search the frequency difference A f
with the n**-largest frequency response on each sliding window, i.e.,

Af(t) = argy max" FFTs(sq(t)), (4)

where FFTy(-) is the Fast Fourier Transformation (FFT), ¢ is the index of the sliding window, max"(-) is the
operation selecting the n"-maximum value. After that, a Frequency Difference Series (FDS) with the n’?-largest
frequency response Af;(t) (t = 1,-- -, N) is extracted (i.e., n*"-FDS), which represents a specific signal component
(i.e., LOS signal or reflected signals) in the received signal. To match the short time scale of a stationary speaking,
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we use a sliding window of 20ms with a 50% overlap for FFT operation of each sliding window in the heuristic
method.

After separating reflected signals with LOS signal, we further extract the reflected signals by the user’s vocal
tract from the FDS feature Af,. Usually, the distance between a user’s vocal tract and smartphone is far less
than that between other ambient objects and the smartphone. Hence, TOF of signal reflected by vocal tract is
far smaller than that by ambient objects, which leads to a smaller value of frequency difference. Based on the
analysis, we set a threshold on the FDS features to separate reflected signal by the user’s vocal tract from that by
ambient objects. After that, we can extract the FDS features of reflected signals by the user’s vocal tract from
received signals. Based on the FDS features, we can derive the absolute distance between a point of the vocal tract
and the smartphone based on Eq. (1) and (2). However, such absolute distances limit users to fix the smartphone
in the same place every time, which is almost impossible to follow.

Extracting Position-Irrelative Features. To release the strict restriction, we first need to convert the absolute
distance to relative distance, which is irrelative with the relative position between the smartphone and vocal
tract. Based on the absolute distance between the smartphone and a point of the user’s vocal tract, we can derive
the relative position between two arbitrary points in the vocal tract. Fig. 7 illustrates the conversion from the
absolute distance to the relative distance. There are two points A and B in the vocal tract, whose distance is Ad.
During speaking, the smartphone measures the absolute distances between the smartphone and two points A as
well as B in the vocal tract as d4 and dp through FMCW respectively. According to the cosine law, we can derive

Ad* = di + dlzg — 2dadp cos a, (5)

where « is the angle between the sides of d4 and dp in the triangle. Usually, due to the limited space of the vocal
tract, the value of « is relatively small. For example, we assume the distance between the lip and smartphone is
3cm, so the values of d4 and dp are set as 2.51cm and 3cm respectively. Considering the limited size of the vocal
tract, the value of Ad is assumed as 0.5cm. Following Eq. (5), the value of « can be derived as 2.08°, which is
relatively small. Hence, Eq. (5) can be approximately derived as

Ad* ~ df‘ + d123 — 2dadp = (dA - dB)Z. (6)

From Eq. (6), we can find that there is the one-to-one correspondence between the relative position of two points
in the vocal tract and difference between the two distances of the smartphone and vocal tract (i.e., the relative
distance). Thus, the vocal tract can be characterized by the relative distance independent of relative position
between smartphone and vocal tract. We apply moving variance method to convert the absolute distance to
relative distance. Specifically, we first derive the moving variance of frequency differences in each time slot. Then,
the frequency difference with non-zero moving variances is extracted, which corresponds to both the static shape
and dynamic movements of vocal tract during speaking. After that, all frequency differences are converted from
the absolute distances to relative distances through subtracting the minimum frequency difference with non-zero
moving variance, which extract the features of vocal tract in the position-irrelative manner.

Through the approach above, VocalLock extracts FDS features characterizing the vocal tract during speaking
based on FMCW technique, which are extracted in an attack-resilient manner.

6 PASSPHRASE-INDEPENDENT USER AUTHENTICATION MODEL CONSTRUCTION

Based on the extracted FDS features, VocalLock can construct a user authentication model on smartphones. Since
FDS features are extracted from the acoustic signal variation induced by the vocal tract, especially the dynamic
movements during speaking, the features embed the knowledge about the content of passphrase that is predefined
in the register. This indicates that the user authentication directly employing FDS feature is passphrase-dependent.
To improve the user experience, we consider to construct a user authentication model based on extracted FDS
features of the vocal tract for smartphones in a passphrase-independent manner.
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Fig. 7. Illustration of conversion from absolute distance to relative distance.

As mentioned in Section 3.3, the passphrase-independent features could be exhibited through the statistical
approaches. Along this direction, we employ Gaussian Mixture Model-Uniform Background Model (GMM-
UBM) [38], which explores the statistical characteristics that merely related with the individual uniqueness to
achieve the passphrase-independent user authentication. Typically, GMM-UBM authenticates users with Mel
Frequency Cepstral Coefficient (MFCC) [10, 24, 32] features, which characterize the speech voice during speaking.
Although FDS feature and MFCC feature are extracted from the same speaking process, they exhibit significant
difference in characterizing the speaking.

To bridge the difference for the passphrase-independent authentication, we first design a feature-based transfer
learning model to transfer the feature representation from FDS features to MFCC features. Then, we construct
the passphrase-independent model based on GMM-UBM.

6.1 Building Feature-based Transfer Learning Model for Feature Representation Transferring

VocalLock extracts the FDS features based on FMCW technique, which characterize both the static shape and
dynamic movements of vocal tract during speaking. However, such FDS features are not directly related with
MFCC features, which characterizes the speech voice based on the auditory properties of human ear. To build a
connection between the two kinds of features, we design a feature-based transfer learning method for feature
representation transferring from FDS features to MFCC features.

6.1.1 Encoder-Decoder Neural Network Design for Feature-based Transfer Learning. During a speaking process,
FDS features can be extracted from the vocal tract, while MFCC features can be generated by the speech voice.
Hence, we consider there is a uniform representation between the FDS feature and MFCC feature. To model the
connection between the two kinds of features, we propose an Encoder-Decoder Neural Network (EDNN) based
on the feature-based transfer learning, which maps the FDS features to MFCC features.

Fig. 8 shows the architecture of EDNN based on the feature-based transfer learning. The input FDS feature could
be regarded as a frequency-domain feature during a specific period. To suppress the passphrase information from
the FDS feature as much as possible for the passphrase-independent user authentication, we realize the EDNN
network using a convolution-based neural network, because of its strong capability to exploit in-depth spatial
characteristics underlying the original input [28]. The proposed EDNN consists of two convolutional encoders
and two deconvolutional decoders. Each convolutional encoder is based on Convolutional Neural Network (CNN),
which consists of three layers, i.e., a convolutional layer, a pooling layer and a normalization layer [19]. The
convolutional layer first abstracts the input features as several blocks of compressed representations, and then
the pooling layer reduces the dimension of extracted representation in each block through the average pooling
operation. The normalization layer finally normalizes the representation to accelerate the convergence during the
training. On the other hand, each deconvolutional decoder is based on Deconvolutional Network (DeconvNet)
[57], which consists of three layers, i.e., an unpooling layer, a deconvolutional layer and a normalization layer.
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Fig. 8. Architecture of the EDNN for transferring feature representation.

The first two layers perform the inverse operations of the pooling layer and convolutional layer respectively to
reconstruct the feature, and the normalization layer finally normalizes the representation.

Given FDS feature F of vocal tract during a user’s speaking, the two convolutional encoders in the EDNN
first compress the feature to uniform representation of the speaking behavior. Specifically, the first encoder
e1(F) abstracts FDS feature F to vocal tract-level characteristics F’ of the speaking with 32 convolutional kernels
of 3 X 3-dimension. Then, the second encoder e;(F’) further compresses the vocal tract-level feature F’ to the
user-level feature U (i.e., the uniform representation of speaking for a user) with 64 convolutional kernels of 3 X 3-
dimension. Both encoders employ ReLU (i.e., Rectified Linear Unit) activation function [15] and 2 X 2-dimension
average pooling filter. After that, the two deconvolutional decoders can generate the MFCC features of voice
based on the uniform representation. The first decoder d; (U) uncompresses the uniform representation U to
the user-level feature M’ with 64 deconvolutional kernels of 3 X 3-dimension. Then, the second decoder dy(M")
further regenerates the voice-level characteristics Mp, i.e., the transferred MFCC feature, which is called as the
Vocal-Tract-transferred MFCC (VT-transferred MFCC) with 32 deconvolutional kernels of 3 X 3-dimension. Also,
all of the two encoders and two decoders employ the batch normalization method in the normalization layer to
accelerate convergence velocity of training. To enable the EDNN with the capability of transferring FDS feature
to MFCC feature, the EDNN is trained with the objective as follows:

min DIF(M, M) = min ||[M — Mp|l2 + AQuveighes, (7)

where M, is the VT-transferred MFCC feature from the EDNN, i.e., M, = dz(d; (e2(e1(F)))), M is the input MFCC
feature of users’ speech voice, || - ||2 is the L, norm, Q,,eignss is L, regulariser for the parameters and A is the
coefficient of Qyeighss.

6.1.2 Model Training. To train the EDNN model, VocalLock requires both FDS features of vocal tract and MFCC
features of speech voice. The received acoustic signals consist of the chirp signal and voice signal. With the
chirp signal, the FDS features are extracted as mentioned in Section 5.2. On the other hand, the MFCC features
can be extracted from the voice signal. Specifically, we first use a lowpass filter with cut-off frequency of 5kHz
and Equiripple window to extract the voice signal in received signals. Then, we derive the frequency response
of speech voices with a Hanning sliding window of 20ms and 50% overlap, which matches parameters in FDS
extraction. After that, the frequency response is filtered by the filterbanks to derive the ear-sensitive components
in speech voices. The number of filterbank channels is set to 35 that corresponds to [133, 4860] Hz, which matches
the frequency passband of speech voices. Finally, the MFCC can be derived through performing discrete cosine
transformation on the filtered frequency response. Combining the extracted MFCC of speech voice with FDS of
vocal tract, the EDNN model can be trained through optimizing Eq. (7) for transferring the feature representation
from FDS feature to MFCC feature, i.e., the VT-transferred MFCC features.
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Since ENDD model is an individual-independent model for feature representation transferring, the model can
be pre-trained with the data collected from other individuals, instead of the legitimate users registered in the
system. Hence, the training of EDNN does not require a large number of data samples in the register stage to
ensure user-friendly experience. Moreover, instead of directly utilizing MFCC feature for user authentication,
VocalLock actually exploits the FDS features, which embed the liveness information, for user authentication.
Thus, such a FDS feature-based user authentication can resist the replay attacks.

6.2 Constructing User Authentication Model

To implement the passphrase-independent user authentication, we construct the user authentication model based
on the transferred feature (i.e., the VT-transferred MFCC feature) utilizing the GMM-UBM.

GMM-UBM exploits the statistical characteristics that are merely related with the individual uniqueness to
achieve the passphrase-independent user authentication. GMM-UBM utilizes a UBM (i.e., a special GMM in
the model), which is pre-trained with a large number of individuals, to build an individual-independent model.
Specifically, GMM uses multiple Gaussian distributions to fit the characteristics of a specific user, i.e.,

K
pGxld) = ) i (xlps, 3), ®)

i=1
where x is voice feature of a user, ¢ (x|p;, 2;) is the i" Gaussian distribution, u; and ¥; are the mean and variance
of the distribution respectively, ¢; is the weight of ith Gaussian distribution, K is the number of Gaussian
distributions and A is the parameter set of GMM (i.e., A = {a;, p;, 2;li = 1,- - -, K}). The pre-trained data could be
from an existing open user identification dataset that includes a large number of different individuals, such as
VoxCeleb [34]. Specifically, in the register stage, an individual-independent GMM is first trained as the UBM
through the Expectation-Maximization (EM) method [11] with MFCC features of existing open-source user
identification dataset [34], which includes a large number of individuals. Then, VocalLock calibrates the pre-
trained UBM to GMM with the VT-transferred MFCC feature of the user through Bayesian adaptation [13] for
constructing a unique GMM for each user. Given the trained UBM and VT-transferred MFCC feature of the user,
VocalLock estimates a parameter set A to best match the user’s features, i.e., maximizing the posteriori probability,

arg max p(A|Mp) = arg max p(Mp|1)p(4). ©)

where M, is the VT-transferred MFCC feature of the user, p(4) is the prior probability of the parameter set A in
the pre-trained UBM, and p(Mj|A) is the likelihood. The user’s GMM is trained with the objective of Eq. (9) to
authenticate the identity of the user. Therefore, after registering for the model training, VocalLock can build a
GMM that is calibrated from pre-trained UBM for each user, which is used for the passphrase-independent user
authentication and spoofer detection.

6.3 Authenticating Users & Detecting Spoofers

When a user requests the login access, the user can speak an arbitrary passphrase (i.e., can be either the same
or different with the passphrase in the register stage) to VocalLock for login. VocalLock first preprocesses the
received signal and extracts FDS features from the signal. Then, the FDS feature of vocal tract is transferred
to VT-transferred MFCC feature through the trained EDNN. Next, based on the VT-transferred MFCC feature,
VocalLock needs to determine which legitimate user best matches the feature for user authentication. Specifically,
there are n users registered in the system, which constructs n GMM-UBM models for the legitimate users, i.e.,
GMM,, - -+, GMM,. The login user L logins the system with the VT-transferred MFCC feature m. To authenticate
the user’s identity, VocalLock derives the log-likelihood ratio [39] with the model of each legitimate user, i.e.,

Ai(m) = log p(m|Agmm;) — log p(m|Ausm), (10)
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where Agma, and Aypy are the parameter sets of the i" user’s GMM-UBM and the UBM models respectively.
The login user is identified as the i** user with the maximum log-likelihood ratio, i.e., L = arg max; A;(m).

A login user can be a curious or malicious spoofer without legitimate identity in the system. Hence, VocalLock
should detect the spoofer in the login stage to prevent the smartphone from malicious use. Assume a spoofer
intends to login the system. Since the FDS feature of vocal tract can characterize the user uniqueness, the
VT-transferred MFCC feature has the same capability of exhibiting the uniqueness. This induces a quite low
value of A;(m),i € [1,n], ie., the log-likelihood ratio for any legitimate user under a spoofer’s feature. Hence, if
the maximum log-likelihood ratio of the login user is lower than empirical results, VocalLock regards the login
user as an illegal spoofer.

Through the EDNN-based feature transferring and GMM-UBM-based authentication model, VocalLock could
authenticate individual identity in a passphrase-independent manner, realizing the user-friendly authentication
system.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of VocalLock under the collected data from 75 volunteers in three
real environments.

7.1 Experimental Setup & Methodology

We implement VocalLock on three commercial smartphones, i.e., a Galaxy S6, a Xiaomi 6 and a Huawei P10. The
transmitted acoustic signal for FMCW is designed as mentioned in Section 5.1. The sampling rate of microphone
in the smartphones is set as 48kHz. Our experiments are conducted in three different environments, i.e., a lab
(quiet and few people walking around), a canteen (noisy but few people walking around), and a mall (noisy
and many people walking around). In each environment, we randomly recruit 25 volunteers including 14 males
and 11 females with the ages ranging in [20, 45] to conduct the experiments, so there are 75 volunteers for the
experiments in total. Among the 25 volunteers, 15 of them register the system as legitimate users, while the rest
10 as spoofers. In each experiment, each volunteer randomly selects a smartphone and holds the smartphone
with the microphone directed towards the vocal tract. The distance between microphone and volunteer’s vocal
tract ranges in [3, 20]cm. Each of the 15 legitimate users are required to speak a passphrase 3 times in the register
stage. Each user repeats the register with 20 different passphrases respectively to comprehensively take the
impact of passphrase content into consideration. The passphrases used in the experiments are selected from
Word Frequency [5]. Each passphrase contains 1-4 words, and each word in the passphrase is with the phonemes
more than 3. But during the login stage, the volunteers (including legitimates users and spoofers) can speak an
arbitrary passphrase that can be either the same or different with that in the register stage for the login. The
experiments require each volunteer to perform 20 times passphrase speaking in the login stage. The UBM model
of VocalLock is trained by VoxCeleb [34] dataset involving 1,251 different persons. Then, the GMM-UBM for each
legitimate user is trained by calibrating the UBM with each legitimate user’s collected data.

To evaluate the performance of VocalLock, we define several metrics as follows.

o Confusion Matrix. Each row and each column of the matrix denotes the ground truth and the authentication
result of VocalLock respectively. The i*"-row and j!"-column entry of the matrix shows the percentage of samples
that are authenticated as the j* user while actually are the i*" user.

o Accuracy. The probability that a user who is A is exactly authenticated as A.

e False Accept Rate. The probability that a user not a legitimate user is authenticated as a legitimate user.

o False Reject Rate. The probability that a user not a spoofer is authenticated as a spoofer.

e Response Time. Assume the end time of a user’s speaking is t;peqk, and the time of a user successfully logins
the system is tjo4in. The response time is defined as t = tjogin — tspeak-
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Fig. 9. Performance of VocalLock on user authentication in three different environments.

o Energy Consumption. Assume the battery power of a mobile device is P. When a user activates VocalLock for
register or login to the mobile device, the system consumes w% of the power. The energy consumption is defined
asp =P xXw.

7.2  Performance on User Authentication

We first evaluate the overall performance of VocalLock on user authentication. Fig. 9(a) shows the confusion
matrix of VocalLock, each entry of which is the average accuracy of that in three different environments. We can
see that VocalLock can achieve an average accuracy of 90.4% in authenticating a legitimate user’s identity, and
an average accuracy of 96.7% in detecting a spoofer. Overall, the average accuracy (including legitimate user
identification and spoofer detection) of VocalLock on user authentication is 91.0% with a standard derivation of
3.1%. We also evaluate the performance of VocalLock under the same passphrase in the register and login stages,
and the results are shown in Fig. 9(b). It can be observed that VocalLock can achieve an average accuracy of 94.0%
in user authentication and 97.8% in spoofer detection under the same passphrase, which are both higher than
that of VocalLock under different passphrases. This is because the knowledge of passphrase can be exploited to
improve the performance [14]. But we also find that the difference of VocalLock’s accuracy between different
passphrases and the same passphrase is not significant, i.e., only 2.2%.

We further perform an experiment to compare the performance of VocalLock under different passphrases (DP)
and the same passphrase (SP) with the mouth movement-based user authentications (i.e., LipPass [26, 27] and
VoiceLive [59]) and voiceprint-based user authentication (i.e., WeChat [50]) in three different environments. In
each experiment, the 10 legitimate users are required to speak the 6 predefined passphrases 3 times to the four
user authentication systems respectively in the register stage. During the login stage, the volunteers (including
legitimates users and spoofers) perform 20 times to the four systems respectively for the login. Note that VocalLock-
SP, LipPass, VoiceLive and WeChat require volunteers to speak the same passphrase with that in the register stage
for login, while VocalLock-DP does not have such a constraint. Fig. 9(c) shows the accuracies of VocalLock-DP,
VocalLock-SP, LipPass, VoiceLive and WeChat in the three environments respectively. It can be observed that
the accuracy of VocalLock under different passphrases is 93.8% in the lab, which is similar to 92.8% of LipPass
and 94.0% of WeChat. This indicates VocalLock can achieve satisfactory performance on user authentication.
But the accuracy of VoiceLive is a little lower than the other three methods, i.e., 90.6%. This is because VoiceLive
requires users to keep the same relative position between smartphone and their mouth, which is difficult for
users to follow. Hence, slight position shift induces performance degradation. Also, the VocalLock under the same
passphrase can achieve a higher accuracy than VocalLock under different passphrases, i.e., 95.8% in the lab. But
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three environments.

the difference between them is still not significant, which is consistent with the results of the two confusion
matrices. Moreover, we can see that the accuracies of VocalLock under different passphrases are 93.8%, 92.1% and
91.1% in the three environments respectively, which exhibits insignificant difference of VocalLock’s accuracies
in various environments. On the contrary, WeChat based on voiceprint suffers from significant performance
degradation in some environments. Specifically, the accuracies of WeChat decrease to 54.4% and 56.1% in noisy
environments respectively, i.e., the canteen and mall.

7.3  Performance on Attack Resistance

To demonstrate that VocalLock can resist various attacks in real authentication scenarios, we conduct an experi-
ment under three kinds of attacks. The first attack is the eavesdropping and replay attack, in which an adversary
places a smartphone close to a legitimate user and records the acoustic signals including reflected signals by the
vocal tract and voice signals. The second attack is the voice synthesis attack, i.e., an adversary indirectly traces a
few voice samples of a legitimate user by recording daily speech or phone conversation, and synthesizes the
target voices of the legitimate user through a speech synthesizer [33] for attack. The third attack is the mimic
attack, in which an adversary mimics the movement of a legitimate user’s vocal-tract behavior during speaking
for the attack.

We recruit 24 volunteers for the experiment. The 1%*-6!" volunteers register to the system as legitimate
users, and the rest 18 volunteers are divided into 3 groups equally to attack the system as adversaries through
eavesdropping and replay (i.e., 7th_1th volunteers), voice synthesis (i.e., 13th-18th users), and mimic attack (i.e.,
19t7-24*" users) respectively. The experiments are repeated in the three real environments respectively, i.e., lab,
canteen and mall. In each experiment, the 6 legitimate users register to the system through speaking a passphrase
3 times, and the 18 adversaries try to login the system with the three kinds of attacks respectively, in which each
adversary performs the attack 12 times. We also repeat the experiments on LipPass, VoiceLive and WeChat to
compare the performance on attack resistance among the four user authentication systems.

Fig. 10 shows the false accept rates of VocalLock, LipPass, VoiceLive and WeChat under the three attacks
respectively. We find that the false accept rates of VocalLock under the three kinds of attacks are all less than
10%, which indicates VocalLock can resist various attacks. For mouth movement-based user authentication (i.e.,
LipPass), the false accept rates under voice synthesis and mimic attacks are both below 15%, while that under
eavesdropping and replay attack is 57.3%. This result demonstrates the vulnerability of mouth movement-based
user authentication to the eavesdropping and replay attack. Also, VocalLock outperforms LipPass in resisting mimic
attacks with FAR approaching 5%. This is because the adversary can only mimic the dynamic movements of vocal
tract, instead of the static shape of multiple organs in the vocal tract. Another mouth movement-based solution,
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i.e., TDoA-based VoiceLive, achieves better performance in attack resistance. For the three attacks, VoiceLive
can achieves 3.5%, 4.3% and 1.5% false accept rates, which even outperforms the proposed VocalLock. However,
considering its strict requirements, VocalLock could be a more user-friendly option for user authentication. As
for voiceprint-based user authentication (i.e., WeChat), the false accept rates under eavesdropping and replay
as well as voice synthesis attacks are both above 60%, which are significantly higher than that of VocalLock.
This is because WeChat only utilizes the physiological characteristics underlying the voices during speaking
without liveness verification. Hence, a successful attack could be performed as long as an adversary obtains
the voice samples of a legitimate user. All the results demonstrate that VocalLock outperforms existing mouth
movement-based and voiceprint-based user authentications on attack resistance.

7.4 Performance on User Experience

A large false reject rate indicates a high probability that a legitimate user is rejected by the system in the login
stage, which significantly degrades the user experience. Fig. 11 shows the false reject rate of VocalLock under
three different smartphones in three different environments. We can see that the overall false reject rates are all
less than 2% under the three smartphones. In the lab environment, VocalLock can further achieve a false reject
rate below 1% under the three smartphones. Moreover, it can be observed the false reject rates in the canteen and
mall are a little higher than that in the lab. But the difference between false reject rates in the lab and other two
environments is less than 3%, which is not significant. These results demonstrate VocalLock seldom rejects the
login request from a legitimate user and thus achieves a user-friendly experience.

We also evaluate the user experience through the times that a user speaks a passphrase to the system for a
successful login, i.e., the speaking times for a successful login. During the login stage, a user may fail to have
access to the system within speaking a passphrase once. Hence, the speaking times for successful login exhibits
the user experience during using VocalLock. Fig. 12 shows the CDF of speaking times for successful login under
three different smartphones. We can see that 82.7% volunteers can successfully login the system with only
speaking the passphrase once. Overall, over 95% volunteers could successfully login the system within speaking
a passphrase 3 times. Such a speaking time for successful login is acceptable for users. Also, CDF of speaking
times for successful login under different smartphones exhibits subtle differences. All these results indicate that
VocalLock can achieve a user-friendly experience.

As a service for mobile devices, the energy consumption of VocalLock also affects the user experience. Fig.
13 shows the energy consumption of VocalLock in the register and login stages. We can see that in the login
stage, the average energy consumption of VocalLock on the three devices is 24.8mAh, which is close to that
under the medium brightness of screens [7]. This result indicates VocalLock would not induce significant power
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overhead for mobile devices during user authentication. But in the register stage, the average energy consumption
dramatically increases to 106mAh. Fortunately, the register stage only runs once when a new user registers to the
system. Therefore, VocalLock achieves a user-friendly experience in terms of energy consumption.

7.5 Impact of Relative Position between Smartphone and Vocal Tract

Acoustic signals attenuate as propagating through a distance. Hence, the distance between a smartphone and a
user’s vocal tract has a certain impact on the performance of VocalLock. We enable smartphones to measure the
distance between users’ vocal tract and the microphone through Time of Arrival (ToA). Fig. 14 shows the accuracy
of VocalLock on user authentication under different distances between smartphones and vocal tract in the three
environments. We can observe that the accuracy decreases with the increase of distance between smartphone and
vocal tract. This is because as the distance increases, the signal strength of received acoustic signals significantly
decreases, which induces a low Signal-Noise-Ratio (SNR) and reduces the resolution of extracted features for user
authentication. However, when the distance is within 8cm, VocalLock achieves an accuracy over 90% in all three
different environments. The overall accuracy of VocalLock is 91.8% under the distance of 8cm. If a user is in a
quiet environment (i.e., lab in our experiments), the distance can be extended to 10cm for an accuracy over 90%
of VocalLock. Such distances are usually natural for a user to use VocalLock on smartphones [9].

Except for the distance, the orientation (i.e., the angle) between the smartphone and vocal tract also affects
the performance of VocalLock. The angle when the smartphone is directly towards the lip is defined as the
orientation of 0°. Along with this, the angle 6 between the smartphone-lip connection and 0° line is defined
as the orientation between the smartphone and vocal tract. And the angle is positive when the smartphone-lip
connection is above the 0° line, and vice versus. In this experiment, we fix the distance between the smartphone
and vocal tract as 10cm for variable control. Fig. 15 shows the accuracy of VocalLock under different orientations
between smartphones and the vocal tract. We can find that the accuracy decreases when the orientation is away
from 0°. This result indicates the extracted features under various orientations are different from each other,
inducing performance degradation on user authentication. But when the orientation is within [-30°,30°], the
accuracies are still above 80%. Considering the slight shift in orientation in most cases, such performance is
acceptable for users.

7.6 Impact of Universal Background Model (UBM)

VocalLock employs the GMM-UBM model to construct the user authentication model, which intrinsically belongs
to GMM-based approaches. Hence, we perform an experiment to evaluate the performance of VocalLock with
GMM-UBM and typical GMM (i.e., without UBM). Fig. 16 shows the accuracy of VocalLock with and without
UBM under different devices. It can be seen that VocalLock with UBM achieves an average accuracy of 92.3%,
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while that without UBM only achieves 54.4%. This is because the UBM is pre-trained using a large number of
samples from different persons, e.g., trained with VoxCeleb dataset in this experiment, which enables UBM with
the basic knowledge of individual uniqueness under the vocal tract. Calibrating the GMM for each legitimate
user on the basis such knowledge significantly helps to improve the authentication performance.

7.7 Impact of Training Data Size

The size of training data is the number of a user’s speaking times in the register stage. More times of a user’s
speaking provide more data for model training, which leads to higher accuracy on user authentication. However,
too many speaking times significantly degrade user experience in the register stage. Fig. 17 shows the accuracy of
VocalLock under different sizes of training data in the three different environments. We can see that as the size of
training data increases, the accuracy first increases and then remains stable. When a user speaks over 3 times in
the register stage, VocalLock can achieve an accuracy over 90% in all the three environments. More speaking times
do not contribute to an improvement in accuracy of VocalLock. Even speaking two times in the register stage,
VocalLock achieves an accuracy of 85.8%. This is because VocalLock constructs the user authentication model
based on GMM-UBM, which only requires users to provide a few training data samples [38]. Usually, existing
voiceprint-based user authentication requires a user to speak a passphrase two times [50]. Therefore, VocalLock
can achieve a user-friendly experience, while remaining secure as a user authentication for mobile devices.

7.8 Impact of Bandwidth for FMCW

As mentioned in Section 5.1, the bandwidth of transmitted chirp signals for FMCW affects the resolution of
sensing the vocal tract. A fine-grained sensing of vocal tract leads to accurate user authentication of VocalLock.
To validate it, we evaluate the performance of VocalLock on user authentication under different bandwidths for
FMCW, i.e., 18kHz—16kHz=2kHz, 20kHz—16kHz=4kHz, 22kHz—16kHz=6kHz, and 24kHz—-16kHz=38kHz. Fig.
18 shows the accuracy of VocalLock on user authentication under different bandwidths in the three environments.
We can see that the overall accuracy of VocalLock increases from 66.7% to 92.3% with the increase of bandwidth
from 2kHz to 8kHz, which is consistent with the analysis in Section 5.1. It can be also observed that the overall
accuracy is still over 80% when the bandwidth is larger than 4kHz (i.e., [16, 20]kHz). This result indicates that
VocalLock can achieve an acceptable performance for the smartphones with a speaker that may be not capable to
transmit an acoustic signal as high as 24kHz.

8 LIMITATIONS AND FUTURE DIRECTIONS

VocalLock is only a research prototype, instead of a mature industry product, thus remaining several limitations:

i). The authentication task of VocalLock is to serve as the auxiliary channel for two-factor authentications.
VocalLock explores both the static shape and dynamic movements of vocal tract as biometrics to realize the user
authentication, which has the potential to serve as a primary authentication factor theoretically. However, similar
to other behavioral characteristics-based solutions, the vocal tract, especially its dynamic movement, is easily
affected by habit change, disease infection, etc., which induces unstable biometrics and leads to authentication
performance degradation. Hence, it is appropriate to treat VocalLock as auxiliary channel for two-factor authenti-
cations. Moreover, considering the same speaking behavior with voiceprint-based authentication, VocalLock is
qualified as a natural and secure auxiliary channel. We will explore the connection between voiceprint and vocal
tract to realize a two-factor authentication as one of our future directions.

ii). The relative position between a smartphone and vocal tract is limited in the authentication scenario. To
ensure VocalLock can accurately sense the vocal tract for user authentication, a user should keep the relative
distance less than 10cm, and the orientation within angles of [-30, 30]°, as demonstrated in Section 7.5. The
distance restriction may hinder the extension of VocalLock on gradually-prevalent smart speakers (e.g., Amazon
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Echo [2] and Google Home [16]) in smart homes. However, for the user authentication in smartphones, such
a distance still remains satisfactory [9]. On the other hand, the orientation restriction is intrinsically caused
by the strong directionality from the FMCW technique employed in VocalLock. But compared with VoiceLive,
VocalLock partially releases the strong relative position restriction. Potential further solutions may lie on utilizing
multiple speakers widely integrated on smartphones to extend the sensing orientation. We leave the extension of
VocalLock for far-field and wide-angle scenarios in our future work.

iii). The register stage of VocalLock requires users to provide data samples in quiet environments for training
the EDNN model. This is because the EDNN model requires both the knowledge of vocal tract and speech voices
to construct the correspondence between these two features for feature-based transfer learning. Hence, the clean
speech voices (i.e., without inferred noises) need to be captured for the model training. Fortunately, the register
stage is a one-off data collection process. In the more frequent login stage, VocalLock can be used in various
environments regardless of the noises, which does not degrade the user experience.

iv). The proposed VocalLock may be vulnerable to direct attacks. An adversary can pre-implant a malicious APP
in a user’s smartphone. The malicious APP compromises the user’s smartphone to invoke the microphone for
eavesdropping FDS features of the user’s vocal tract in an inconspicuous manner. Then, based on the eavesdropped
features, the adversary can directly launch the replay attacks to the system. The straightforward countermeasure is
that users should be aware of and carefully control the microphone permission, i.e., the permission of microphones
should not be granted for APPs from unknown sources.

v). The stability of VocalLock over time remains unknown. This paper has demonstrated that VocalLock can
accurately distinguish 25 different persons in real authentication scenarios. However, the data is collected within
1 month for each environment only. Different from the inborn biometrics (e.g., fingerprint), the individual
uniqueness derived from vocal-tract behaviors may vary due to the habit change as time goes on. This open issue
also remains to be verified for existing mouth movement-based user authentication studies [26, 27, 46, 58, 59]. It
is necessary to perform long-term experiments in real authentication scenarios for further validations. Potential
solutions may lie on involving temporal feature-based techniques, such as Hidden Markov Model (HMM) and
Recurrent Neural Network (RNN), to enable the capability of long-term feature learning. We leave the long-term
validation and relative solution design in our future work.

9 CONCLUSIONS

In this paper, we propose a user authentication system, VocalLock, which characterizes the whole vocal tract
leveraging acoustic signals to identify different individuals. VocalLock first extracts unique features of the whole
vocal tract through FMCW technique, which is immune to mimic and replay attacks. Then, VocalLock constructs
a passphrase-independent model to authenticate user identities. To construct such a model, we first propose an
EDNN to transfer the features of vocal tract to that of speech voices. Based on transferred features, VocalLock
further employs the speech voice-based GMM-UBM to construct the passphrase-independent authentication
model. Experiments under 75 volunteers in three real environments demonstrate that VocalLock can accurately
authenticate user identity in a passphrase-independent manner, and resist replay attack as well as mimic attack.

ACKNOWLEDGMENTS

This research is supported in part by NSFC (No. 61772338) and National Key R&D Program of China (No.
2018YFC1900700). We would like to sincerely thank the anonymous editors and reviewer for their helpful
suggestions and comments to improve the quality of this paper.

REFERENCES

[1] Jont B Allen and Lawrence R Rabiner. 1977. A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE 65, 11 (1977),
1558-1564.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 51. Publication date: June 2020.



VocalLock: Sensing Vocal Tract for Passphrase-Independent User Authentication Leveraging Acoustic Signals on Smartphones « 51:23

[2] Amazon. 2019. Echo & Alexa - Amazon Device. [Online]. Available: https://www.amazon.com. (2019).

[3] Apple. 2019. iPhone XS - FaceID - Apple. [Online]. Available: https://www.apple.com/iphone-xs/face-id/. (2019).

[4] L. Benedikt, D. Cosker, P. L. Rosin, and D. Marshall. 2010. Assessing the Uniqueness and Permanence of Facial Actions for Use in
Biometric Applications. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 40, 3 (2010), 449-460.

[5] C.BYU. 2020. Word frequency: based on 450 million word coca corpus. [Online]. Available: https://www.wordfrequency.info. (2020).

[6] J.P. Campbell. 1997. Speaker recognition: a tutorial. Proc. IEEE 85, 9 (1997), 1437-1462.

[7] Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a Smartphone. In Proc. USENIX ATC. Boston, MA, USA,
21:1-21:14.

[8] Mingshi Chen, Panlong Yang, Jie Xiong, Maotian Zhang, Youngki Lee, Chaocan Xiang, and Chang Tian. 2019. Your Table Can Be an
Input Panel: Acoustic-based Device-Free Interaction Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 1 (2019),
3:1-3:21.

[9] S. Chen, K. Ren, S. Piao, C. Wang, Q. Wang, J. Weng, L. Su, and A. Mohaisen. 2017. You Can Hear But You Cannot Steal: Defending
Against Voice Impersonation Attacks on Smartphones. In Proc. IEEE ICDCS. 183-195.

[10] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet. 2011. Front-end factor analysis for speaker verification.
IEEE Transactions on Audio, Speech, and Language Processing 19, 4 (2011), 788-798.

[11] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society: Series B (Methodological) 39, 1 (1977), 1-22.

[12] G.R.Doddington. 1985. Speaker recognition—Identifying people by their voices. Proc. IEEE 73, 11 (1985), 1651-1664.

[13] J.-L. Gauvain and Chin-Hui Lee. 1994. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov
chains. IEEE Transactions on Speech and Audio Processing 2, 2 (1994), 291-298.

[14] H. Gish and M. Schmidt. 1994. Text-independent speaker identification. IEEE Signal Processing Magazine 11, 4 (Oct 1994), 18-32.

[15] Xavier Glorot, Antoine Bordes, Yoshua Bengio, Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2012. Deep Sparse Rectifier Neural
Networks. In Proc. AISTATS’12. La Palma, Canary Islands, 315-323.

[16] Google. 2019. Google Home - Smart Speaker & Home Assistant. [Online]. Available: https://store.google.com/us/product/google_home.
(2019).

[17] Google. 2019. Google Smart Lock. [Online]. Available: https://get.google.com/smartlock/. (2019).

[18] Diego Gragnaniello, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva. 2015. Local contrast phase descriptor for fingerprint liveness
detection. Pattern Recognition 48, 4 (2015), 1050-1058.

[19] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167 (2015).

[20] Cesar Iovescu and Sandeep Rao. 2017. The fundamentals of millimeter wave sensors. Technical Report. Texas Instruments. http:
//www.ti.com/lit/wp/spyy005/spyy005.pdf

[21] Artur Janicki, Federico Alegre, and Nicholas Evans. 2016. An assessment of automatic speaker verification vulnerabilities to replay
spoofing attacks. Security and Communication Networks 9, 15 (2016), 3030-3044.

[22] Mark Keith, Benjamin Shao, and Paul John Steinbart. 2007. The usability of passphrases for authentication: An empirical field study.
International journal of human-computer studies 65, 1 (2007), 17-28.

[23] HJ Landau. 1967. Sampling, data transmission, and the Nyquist rate. Proc. [EEE 55, 10 (1967), 1701-1706.

[24] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. 2014. A novel scheme for speaker recognition using a phonetically-aware
deep neural network. In Proc. IEEE ICASSP. Florence, Italy, 1695-1699.

[25] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and Na Ruan. 2016. When CSI Meets Public WiFi: Inferring
Your Mobile Phone Password via WiFi Signals. In Proc. ACM CCS. Vienna, Austria, 1068-1079.

[26] LiLu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Linghe Kong, and Minglu Li. 2019. Lip Reading-Based User Authentication
Through Acoustic Sensing on Smartphones. IEEE/ACM Transactions on Networking 27, 1 (2019), 447-460.

[27] LiLu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Yunfei Liu, and Minglu Li. 2018. LipPass: Lip Reading-based User Authentication
on Smartphones Leveraging Acoustic Signals. In Proc. IEEE INFOCOM. Honolulu, HI, USA, 1466-1474.

[28] LiLu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Minglu Li, and Xiangyu Xu. 2019. I3: Sensing Scrolling Human-Computer Interactions for
Intelligent Interest Inference on Smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3 (2019), 97:1-97:22.

[29] LiLu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Xiangyu Xu, Guangtao Xue, and Minglu Li. 2019. KeyListener: Inferring Keystrokes on
QWERTY Keyboard of Touch Screen through Acoustic Signals. In Proc. IEEE INFOCOM. Paris, France, 1-9.

[30] Wenguang Mao, Jian He, and Lili Qiu. 2016. CAT: high-precision acoustic motion tracking. In Proc. ACM MobiCom. New York City, NY,
USA, 69-81.

[31] Wenguang Mao, Mei Wang, and Lili Qiu. 2018. AIM: Acoustic Imaging on a Mobile. In Proc. ACM MobiSys. Munich, Germany, 468-481.

Pavel Matéjka, Ondfej Glembek, Fabio Castaldo, Md Jahangir Alam, Oldfich Plchot, Patrick Kenny, Lukas Burget, and Jan Cernocky. 2011.

Full-covariance UBM and heavy-tailed PLDA in i-vector speaker verification. In Proc. IEEE ICASSP. Prague, Czech Republic, 4828-4831.

=

—
w
5%}

—

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 51. Publication date: June 2020.


https://www.amazon.com
https://www.apple.com/iphone-xs/face-id/
https://www.wordfrequency.info
https://store.google.com/us/product/google_home
https://get.google.com/smartlock/
http://www.ti.com/lit/wp/spyy005/spyy005.pdf
http://www.ti.com/lit/wp/spyy005/spyy005.pdf

51:24

(33]
(34]
(35]
(36]
(37]
(38]
(39]

(40]
[41]

(42]
(43]

[44]
(45]

[46]
(47]
(48]
[49]
(50]
(51]
(52]
(53]
(54]
(55]
(56]
(57]
(58]
(59]

[60]

e Luetal

Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena. 2015. All Your Voices are Belong to Us: Stealing Voices to Fool Humans
and Machines. In Proc. ESORICS. Springer, Vienna, Austria, 599-621.

A. Nagrani, J. S. Chung, and A. Zisserman. 2017. VoxCeleb: a large-scale speaker identification dataset. In Proc. ISCA INTERSPEECH.
Stockholm, Sweden, 2616-2620.

Swadhin Pradhan, Ghufran Baig, Wenguang Mao, Lili Qiu, Guohai Chen, and Bo Yang. 2018. Smartphone-based Acoustic Indoor Space
Mapping. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 2, Article 75 (2018), 26 pages.

Swadhin Pradhan, Wei Sun, Ghufran Baig, and Lili Qiu. 2019. Combating Replay Attacks Against Voice Assistants. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 3, 3 (2019), 100:1-100:26.

K. Qian, C. Wu, F. Xiao, Y. Zheng, Y. Zhang, Z. Yang, and Y. Liu. 2018. Acousticcardiogram: Monitoring Heartbeats using Acoustic
Signals on Smart Devices. In Proc. IEEE INFOCOM. Honolulu, HI, USA, 1574-1582.

Douglas A. Reynolds. 1997. Comparison of Background Normalization Methods for Text-Independent Speaker Verification. In Proc.
ISCA EUROSPEECH. Rhodes, Greece, 963-966.

Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. 2000. Speaker Verification Using Adapted Gaussian Mixture Models.
Digital Signal Processing 10, 1 (2000), 19-41.

Samsung. 2017. Iris recognition on Galaxy S8. [Online]. Available: https://www.samsung.com/au/iris/. (2017).

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified embedding for face recognition and clustering. In
Proc. IEEE CVPR. Boston, MA, USA, 815-823.

Wei Shang and Maryhelen Stevenson. 2010. Score normalization in playback attack detection. In Proc. IEEE ICASSP. Dallas, Texas, USA,
1678-1681.

Sigurdur Sigurdsson, Kaare Brandt Petersen, and Tue Lehn-Schigler. 2006. Mel Frequency Cepstral Coefficients: An Evaluation of
Robustness of MP3 Encoded Music. In Proc. ISMIR. Victoria, Canada, 286—289.

Merrill Ivan Skolnik. 1970. Radar handbook. McGraw-Hill, Incorporated, New York, NY, USA.

Jiayao Tan, Cam-Tu Nguyen, and Xiaoliang Wang. 2017. SilentTalk: Lip reading through ultrasonic sensing on mobile phones. In
Proceedings of IEEE INFOCOM. IEEE, Atlanta, GA, USA, 1-9.

Jiayao Tan, Xiaoliang Wang, Cam-Tu Nguyen, and Yu Shi. 2018. SilentKey: A New Authentication Framework Through Ultrasonic-based
Lip Reading. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1 (2018), 36:1-36:18.

Emanuel von Zezschwitz, Paul Dunphy, and Alexander De Luca. 2013. Patterns in the Wild: A Field Study of the Usability of Pattern
and Pin-based Authentication on Mobile Devices. In Proc. ACM MobileHCI. Munich, Germany, 261-270.

Tianben Wang, Daqing Zhang, Yuanging Zheng, Tao Gu, Xingshe Zhou, and Bernadette Dorizzi. 2018. C-FMCW Based Contactless
Respiration Detection Using Acoustic Signal. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4 (2018), 170:1-170:20.
Zhi-Feng Wang, Gang Wei, and Qian-Hua He. 2011. Channel pattern noise based playback attack detection algorithm for speaker
recognition. In Proc. IEEE ICMLC. Guilin, China, 1708-1713.

Wechat. 2015. Voiceprint: The New Wechat Password. [Online]. Available: https://blog.wechat.com/2015/05/21/voiceprint-the-new-
wechat-password/. (2015).

Zhizheng Wu, Nicholas Evans, Tomi Kinnunen, Junichi Yamagishi, Federico Alegre, and Haizhou Li. 2015. Spoofing and countermeasures
for speaker verification: A survey. Speech Communication 66 (2015), 130-153.

Xiangyu Xu, Hang Gao, Jiadi Yu, Yingying Chen, Yanmin Zhu, Guangtao Xue, and Minglu Li. 2017. ER: Early recognition of inattentive
driving leveraging audio devices on smartphones. In Proc. IEEE INFOCOM. Atlanta, GA, USA, 1-9.

Xiangyu Xu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Linghe Kong, and Minglu Li. 2019. BreathListener: Fine-grained Breathing Monitoring
in Driving Environments Utilizing Acoustic Signals. In Proc. ACM MobiSys. Seoul, South Korea, 1-13.

Chen Yan, Yan Long, Xiaoyu Ji, and Wenyuan Xu. 2019. The Catcher in the Field: A Fieldprint Based Spoofing Detection for Text-
Independent Speaker Verification. In Proc. ACM CCS. London, United Kingdom, 1215-1229.

J. Yan, A. Blackwell, R. Anderson, and A. Grant. 2004. Password memorability and security: empirical results. IEEE Security Privacy 2, 5
(2004), 25-31.

Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao. 2017. Strata: Fine-grained acoustic-based device-free
tracking. In Proc. ACM MobiSys. Niagara Falls, NY, USA, 15-28.

Matthew D Zeiler, Graham W Taylor, Rob Fergus, et al. 2011. Adaptive deconvolutional networks for mid and high level feature learning.
In Proc. IEEE ICCV. Barcelona, Spain, 2018-2025.

Linghan Zhang, Sheng Tan, and Jie Yang. 2017. Hearing Your Voice is Not Enough: An Articulatory Gesture Based Liveness Detection
for Voice Authentication. In Proc. ACM CCS. Dallas, TX, USA, 57-71.

Linghan Zhang, Sheng Tan, Jie Yang, and Yingying Chen. 2016. Voicelive: A phoneme localization based liveness detection for voice
authentication on smartphones. In Proc. ACM CCS. Vienna, Austria, 1080-1091.

Man Zhou, Qian Wang, Jingxiao Yang, Qi Li, Feng Xiao, Zhibo Wang, and Xiaofeng Chen. 2018. PatternListener: Cracking Android
Pattern Lock Using Acoustic Signals. In Proc. ACM CCS. Toronto, Canada, 1775-1787.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 51. Publication date: June 2020.


https://www.samsung.com/au/iris/
https://blog.wechat.com/2015/05/21/voiceprint-the-new-wechat-password/
https://blog.wechat.com/2015/05/21/voiceprint-the-new-wechat-password/

	Abstract
	1 Introduction
	2 Related Works
	3 Motivation and Feasibility Studies
	3.1 Attack Scenarios
	3.2 Attack-Resisted User Authentication Through Sensing Vocal Tract
	3.3 Passphrase-Independent Vocal Tract-based User Authentication

	4 System Overview
	5 Vocal Tract Feature Extraction
	5.1 Designing Chirp Acoustic Signal for FMCW
	5.2 Extracting Features of Vocal Tract

	6 Passphrase-Independent User Authentication Model Construction
	6.1 Building Feature-based Transfer Learning Model for Feature Representation Transferring
	6.2 Constructing User Authentication Model
	6.3 Authenticating Users & Detecting Spoofers

	7 Performance Evaluation
	7.1 Experimental Setup & Methodology
	7.2 Performance on User Authentication
	7.3 Performance on Attack Resistance
	7.4 Performance on User Experience
	7.5 Impact of Relative Position between Smartphone and Vocal Tract
	7.6 Impact of Universal Background Model (UBM)
	7.7 Impact of Training Data Size
	7.8 Impact of Bandwidth for FMCW

	8 Limitations and Future Directions
	9 Conclusions
	References

